Learning Topology-Preserving Maps Using Self-Supervised Backpropagation
نویسنده
چکیده
Self-supervised backpropagation is an unsupervised learning procedure for feedforward networks , where the desired output vector is identical with the input vector. For backpropagation, we are able to use powerful simulators running on parallel machines. Topology-preserving maps, on the other hand, can be developed by a variant of the competitive learning procedure. However , in a degenerate case, self-supervised backpropagation is a version of competitive learning. A simple extension of the cost function of backpropagation leads to a competitive version of self-supervised backpropagation, which can be used to produce topographic maps. We demonstrate the approach applied to the Traveling Salesman Problem (TSP).
منابع مشابه
Learning Topology-preserving Maps Using Self-supervised Backpropagation on a Parallel Machine
Self-supervised backpropagation is an unsupervised learning procedure for feedfor-ward networks, where the desired output vector is identical with the input vector. For backpropagation, we are able to use powerful simulators running on parallel machines. Topology-preserving maps, on the other hand, can be developed by a variant of the competitive learning procedure. However, in a degenerate cas...
متن کاملDynamic Cell Structures
Dynamic Cell Structures (DCS) represent a family of artificial neural architectures suited both for unsupervised and supervised learning. They belong to the recently [Martinetz94] introduced class of Topology Representing Networks (TRN) which build perlectly topology preserving feature maps. DCS empI'oy a modified Kohonen learning rule in conjunction with competitive Hebbian learning. The Kohon...
متن کاملSupervised Learning for Automatic Classification of Documents using Self-Organizing Maps
Automatic Document Classification that corresponds with user-predefined classes is a challenging and widely researched area. Self-Organizing Maps (SOM) are unsupervised Artificial Neural Networks (ANN) which are mathematically characterized by transforming high-dimensional data into two-dimension representation, enabling automatic clustering of the input, while preserving higher order topology....
متن کاملThe Cocktail Party Problem: Speech/Data Signal Separation Comparison between Backpropagation and SONN
This work introduces a new method called Self Organizing Neural Network (SONN) algorithm and compares its performance with Back Propagation in a signal separation application. The problem is to separate two signals; a modem data signal and a male speech signal, added and transmitted through a 4 khz channel. The signals are sampled at 8 khz, and using supervised learning, an attempt is made to r...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کامل